

## LIFE4FIR – Project LIFE18 NAT/IT/000164

"Decisive in situ and ex situ conservation strategies to secure the critically endangered Sicilian fir, Abies nebrodensis"

# Report on the Evaluation of genetic diversity of adult plants and natural regeneration A1.1



## TABLE OF CONTENTS

| 1. Introduction. General aims of action A1.1                                                                                                    | 3                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 2. Adequacy and availability of SNPs genotyping techniques                                                                                      | 3                         |
| 3. Laboratory equipment and consumables used                                                                                                    | 4                         |
| 4. Sampling and DNA extractions                                                                                                                 | 4                         |
| 5. Assessment of the validity of the OpenArrays technology in A. nebrodensis                                                                    | 5                         |
| 6. Analysis of the genetic diversity and structure of the natural population                                                                    |                           |
|                                                                                                                                                 |                           |
| of A. nebrodensis                                                                                                                               | 7                         |
| of <i>A. nebrodensis</i>                                                                                                                        | 7<br>10                   |
| <ul><li>of <i>A. nebrodensis</i></li><li>7. Summary</li><li>7. Paternity test of natural regeneration plants of <i>A. nebrodensis</i></li></ul> | 7<br>10<br>11             |
| of <i>A. nebrodensis</i>                                                                                                                        | 7<br>10<br>11<br>13       |
| <ul> <li>of <i>A. nebrodensis</i></li></ul>                                                                                                     | 7<br>10<br>11<br>13<br>13 |

#### **SUMMARY REPORT**

ACTION A.1: Protocol setup to define genetic traits of *Abies nebrodensis* population, and to improve its propagation and conservation at low and cryogenic temperatures of selected tissues and organs

A1.1 Evaluation of genetic diversity of adult plants and natural regeneration.

#### 1. Introduction. General aims of action A1.1

The general aim of this action is the evaluation of the genetic variability and the genetic relationships among the 30-adult trees and the 118 juvenile plants from the natural population of *Abies nebrodensis*. SNPs genotyping was used to assess the genotype of these individuals. In particular, we used the OpenArrays technology for the genetic characterization of both the adult trees and juveniles from the natural population. We studied the genetic diversity and structure of the natural population of *A. nebrodensis*. Then, paternity tests were carried out on the seedlings to determine the rate of outcrossing (cross between unrelated individuals), inbreeding and self-fertilization and to assess the rate of introgression (eventual hybridization) due to fertilization of female cones with pollen coming from alien firs (*Abies alba* and *Abies cephalonica*). All the followed steps to achieve the aims of this actions are detailed in the following sections of this report.

#### 2. Adequacy and availability of SNPs genotyping techniques

Originally, it was intended to use GoldenGate Genotyping with VeraCode technology (Illumina Inc., United States). However, this molecular assay is currently in disuse and we did not find any research center or biotechnology company to perform these analyses. Alternatively, we used the PCR-based OpenArrays technology (Thermofisher Inc., United States), which provides a robust and flexible platform for SNP genotyping and provides superior data quality and high sample throughput at low per-sample costs, making it ideally suited for studies involving large volumes of samples. Based on previous genomic data (Balao *et al.* 2020, Ann Bot 125: 495-507), we developed a 120 SNP-array for genotyping of *A. nebrodensis* individuals composed by information-rich SNPs in samples of *A. nebrodensis*, *A. alba* and *A. cephalonica*. In particular, 20 SNPs were selected for their power to discriminate

putative hybrids between *A. nebrodensis* and the other two *Abies* species. A PCoA (Principal coordinates analysis) conducted at the individual level revealed that the first two factors explained 44.3% and 20.3% of the total variation, respectively, and mostly separated the individuals of *A. nebrodensis* from those of *A. alba* and *A. cephalonica* (Figure 1). The remaining 100 SNPs were selected for the paternity test for *A. nebrodensis* based on their high diversity.



**Figure 1.** Ordinations of 35 individuals of *A. nebrodensis* (neb; blue), *A. alba* (alb; red) and *A. cephalonica* (cep; green) species based on PCoA. The first two factors explained 44.3% and 20.3% of the total variation, respectively.

#### 3. Laboratory equipment and consumables used

In view of the large volume of samples to be analyzed in action A.1.1 and A.1.2, we concluded the use of a DNA extraction protocol based on 96-well plate format was the option that best suited our needs. The NucleoMag Plant (Macherey-Nagel Inc., Germany) was the DNA extraction kit selected for preparation of DNA from plant samples. The DNA extraction of this procedure is based on reversible adsorption of nucleic acids to paramagnetic beads under appropriate buffer conditions, obtaining high quality DNA that can directly be used for downstream applications. We acquired specific laboratory equipment for isolation of DNA using this extraction protocol based on 96-well plate format when necessary.

#### 4. Sampling and DNA extractions

In November 2019, all the mature trees (n=30) and young individuals over 5-year old (n=118) in the natural population of *A. nebrodensis* were sampled. All these samples were preserved in silica gel until the subsequent DNA extractions.

We carried out multiple tests to optimize the DNA extractions using the NucleoMag Plant kit in *A. nebrodensis* samples, obtaining as a consequence satisfactory DNA concentration. We followed the manufacturer protocol with the following modifications to optimize DNA extractions:

- The volume of the MC1 elution buffer was increased to 650 μL to ensure the transfer of 400 μL of clear lysate after centrifugation (step 2).
- Samples were centrifuged at lower speed than recommended because of centrifuge limitations. However, we increased the centrifugation time to 40 minutes (double than recommended), obtaining clear lysates for all samples.
- Waiting time in each wash step was extended to 5 minutes instead of 2 minutes to ensure the separation of the magnetic beads against the side of the wells when placing the Squarewell Block on the NucleoMag SEP magnetic separator.
- RAW buffer was used instead of the wash MC4 buffer to get cleaner DNA.
- The wash step using the MC5 buffer was omitted. This step of the protocol is to remove traces of ethanol, but we observed than frequently affected the quantity of DNA concentrations. Instead, samples were kept at room temperature for 10 minutes to ensure that traces of ethanol were volatilized.

From January to September 2020 - this period covers a 3-month halt in the activity due to national emergency caused by COVID-19 – all DNA extractions were performed. DNA extractions were repeated for those samples of which we obtained insufficient DNA concentrations. An 86.3% of success (considering as such a cutoff of 10 ng/ $\mu$ L DNA concentration) was reached. The average concentration of the 30-adult trees and the 118 juvenile plants from the natural regeneration was 51.41 ± 1.64 ng/ $\mu$ L (mean ± SE).

#### 5. Assessment of the validity of the OpenArrays technology in A. nebrodensis

The validity of the OpenArrays technology for SNPs genotyping of *A. nebrodensis* was tested for the first time by genotyping samples in duplicate. In particular, 12 sibling seedlings from the same mother with different DNA concentrations (ranging from 15.3 to 77.8 ng/ $\mu$ L) were selected. We obtained a replicability higher than 99% when comparing the results obtained for each duplicate, ensuring the validity of the genotyping data obtained. The proportion of genotypes (i.e. call rates) obtained for all individuals was similar, independently of the starting DNA concentration of samples. This increased the final number of samples to be genotyped, given that even samples with medium-low or low DNA concentrations can be used for the genetic characterization. Genotyping failures were detected in 64 loci, but only eight of them had a percentage of failure higher than 50% (Figure 2A). Please note that a small portion of loci with a high percentage of failure is always inherent to any genotyping technique.



**Figure 2.** (A) Percentage of failure (Y-axis) for each of the 120 SNPs (X-axis). The dashed line represents a cutoff of 50% of failure. (B) Two-dimensional scatterplot extracted from the Principal Component Analysis (PCA) of the 12 individuals genotyped in duplicate. Each individual is represented with different colors. Individual names correspond to labels assigned during the sampling (from 08\_2013\_0001 to 08\_2013\_0012). Note that sample names ended in ".1" correspond to duplicates.

In addition, preliminary Principal Component Analysis (PCA) revealed genetic differentiation among samples, even though they share the same mother, and showed that duplicates clustered together (Figure 2B). <u>According to these results, we concluded that the used</u> <u>markers allow the correct assignment of progeny from the same mother and can help to</u> <u>elucidate the genetic relatedness among the adult trees.</u>

# 6. Analysis of the genetic diversity and structure of the natural population of *A. nebrodensis*

The 30-adult trees of *A. nebrodensis* were genotyped up to three times (four to six times for challenging samples) to try to recover the 120 informative SNPs for all individuals. After trimming those loci with a high percentage of missing data, we recovered high quality genetic information from 100 loci sites (3.12% of missing data). We used this data to study population structuring, that is if the genetic structure of the population could be subdivided. We used the Discriminant Analysis of Principal Components (DAPC), performed by using the "*adegenet*" package for the R software v.4.0.3, to study the population subdivision in *A. nebrodensis*. We conclusively found the existence of only three genetic clusters within this population (by K-mean clustering; Figure 3A), which is reasonable due to the high levels of selfing and inbreeding and outcrosses occur between related individuals (not random mating), creating genetic substructures of the population. When we represented the genotypes of each individual in a genetic network, we found a high interconnectivity of the three genetic clusters. It should be noted that individuals 21M and 31M appeared outliers of the network (i.e. with very low interconnectivity with the rest of individuals). Below, we discuss the genetic peculiarity of these plants.

Additionally, we analyzed the natural population of *A. nebrodensis* using the COLONY software v.2.0.6.6. Based on the estimated pedigree, we assessed the inbreeding level of the population by estimating the inbreeding coefficient ( $F_{is}$ ) of the population. For *A. nebrodensis*,  $F_{is} = 0.3571$  when inbreeding was accounted in the analysis, obtaining a higher value ( $F_{is} = 0.5263$ ) when selfing was considered in the analysis. These  $F_{is}$  values point to a remarkable level of inbreeding for *A. nebrodensis* individuals. Furthermore, we estimated the effective population size ( $N_e$ ), which is a key parameter in population genetics that estimate the number of individuals that effectively contributes offspring to the next generation. We found that  $N_e = 6$  (3 - 21; Confidence Interval 95%) for the *A. nebrodensis* population, reflecting the strong impact of genetic drift and inbreeding on the

evolutionary dynamics of this population. Lastly, we analyzed the genetic diversity of adult trees by calculating the following coefficients of heterozygosity, homozygosity and inbreeding at the individual level:  $PH_t$  (proportion of heterozygous loci in an individual),  $H_s$  (Standardized heterozygosity based on the mean expected heterozygosity), *IR* (internal relatedness), *HL* (homozygosity by locus) and *INBR* (inbreeding coefficient). These coefficients mainly reflected the moderate homozygosity of *A. nebrodensis* plants due to inbreeding and selfing.

Finally, we calculated the Ritland estimator (*RIT*) of pairwise co-ancestry between adult individuals to know the genetic relatedness of the 30-adult trees of *A. nebrodensis*. Pairwise comparisons of the individuals genetically more distant will result in negative *RIT* values, whereas positive values will be obtained for comparisons of individuals genetically more similar. For clarity, we represented the pairwise co-ancestry of adult trees in Figure 4 (original values are showed in Supplementary Table 1). For regeneration activities in the population, outcrossing of individuals with more negative *RIT* values (i.e. larger red circles in Figure 4) are desirable when possible. A list of the 30 most recommended crosses between mature trees of *A. nebrodensis* can be found in Table 2. Unfortunately, we do not have concise information about the reproductive maturation of adult individuals of this population, so please note some of the recommended outcrossing may involve non-reproductive individuals.



**Figure 3.** (A) Barplot based on a discriminant analysis of principal components (DAPC) of the genetic information from 100 loci, in which the assignment probability to each of the three genetic clusters (red, green and blue) of the 30-adult trees of *A. nebrodensis* is represented. (B) Genetic network of the 30 genotypes of the *A. nebrodensis* population. Genotypes were colored with red, green and blue colors according to their assignment to each of the three genetic clusters of the population.



**Figure 4.** Matrix of pairwise co-ancestry between the 30-adult of *A. nebrodensis. RIT* pairwise estimations are represented by means of relative point size and colors represent either positive (blue) or negative (red) values. Font color (green, red and blue) corresponds to each of the three genetic clusters previously described. Pairwise comparisons within the same genetic cluster are framed within a box.

#### 7. Summary

The natural population of *A. nebrodensis* suffers a significant level of inbreeding, which could have a strong negative impact on the evolutionary dynamics of this population. In our opinion, spontaneous mutations will not be enough to increase genetic variability of the population, so active management of this population is necessary. It is essential to carry out future outcrossing using individuals genetically more distant and, if possible, with low levels of inbreeding and homozygosity. The possibility of genetic rescue should be considered as a way to maintain evolutionary potential and to prevent the high extinction risk of *A. nebrodensis* population.

#### 7. Paternity test of natural regeneration plants of A. nebrodensis

Paternity tests were carried out on natural regeneration seedlings/saplings to determine the rate of outcrossing, inbreeding and self-fertilization and to assess the eventual hybridization due to pollen coming from non-native *Abies* species. Paternity tests were performed using the COLONY software v. 2.0.6.6. We inferred the origin (considering as such the identification of one or both parents) of all young individuals except for three (21.3.P, 21.4.P and 21.5.P). Ninety-one plants from natural regeneration (77.1%) were found to be assigned to their putative mother plants (according the codes appearing in the labels of these individuals), whereas 24 seedlings were assigned to a different mother than appearing in their labels (see Table 3 for further details). Many of these 24 seedlings were assigned to mother plants that were geographically close (e.g. we discovered several seedlings that were offspring from plant 10M but were labeled as offspring of plant 11M; both trees are separated by a few meters). Only in six cases (11.10.P, 11.11.P, 11.12.P, 11.13.P, 11.18.P and 11.19.P) seedlings were found to be assigned to geographically distant mothers. This could be explained by different reasons, such as a long-distance seed dispersal event, previous conservation actions, their closed genetic distance and/or the noise effects of missing data during analysis.

From all the studied seedlings and saplings, most (103 of 109; 94.5%) were originated by self-fertilization, being the other six (11.2.P, 11.3.P, 11.7.P, 11.8.P, 18.2.P and 18.6.P) originated by xenogamy (Table 3). For six plants (16.2.P, 16.3.P, 18.10.P, 18.13.P, 20.1.P and 22.18.P), only one of the progenitors in the population was not inferred and consequently they are putative hybrids with other *Abies* species. To shed light on the possible hybrid origin of these individuals, we carried out a Principal Component Analysis (PCA) using 95 loci (including 18 out 20 selected for this issue) present in *A. nebrodensis*, *A. cephalonica* and *A. alba*. The PCA clearly separated the three species, being the positive values on the X-axis represented by *A. nebrodensis* plants (Figure 5A). Of the six potential hybrids, two of them (18.10.P and 20.1.P) seem to be genetically close to *A. alba* and *A. cephalonica*, respectively, so they can be considered hybrids. The remaining four plants were assigned as *A. nebrodensis*. In addition, according to the PCA, those plants with an uncertain origin (i.e. 21.3.P, 21.4.P and 21.5.P) were genetically similar to *A. nebrodensis*, despite their origin could not be associated to any adult tree currently occurring in the population.

Furthermore, a surprisingly result was obtained for the adult plants 31M and 21 M. The 31M individual was framed within the cloud of points of *A. cephalonica* and plant 21M seems to be genetically more similar to *A. alba* rather than *A. nebrodensis*. That is, 31M and 21M

seems to have a hybrid origin. In addition, three seedlings labeled as offspring of plant 21M were not correctly assigned either to their putatively mother plant nor any other adult tree of *A. nebrodensis*. This definitely increases our suspicious that **these three seedlings may be** hybrids with other fir species. Finally, a DAPC was performed to investigate the hybrid origin of seedlings.



**Figure 5.** (A) Two-dimensional scatterplot extracted from the Principal Component Analysis (PCA) of *A. cephalonica* (blue), *A. alba* (green), adult trees of *A. nebrodensis* (red) and seedlings from natural regeneration with a putative hybrid origin (orange). The first two factors explained 22.4% and 6.3% of the total variation, respectively. (B) Barplot based on a discriminant analysis of principal components (DAPC) of the genetic information from 95 loci sites, in which the assignment probability to each of the three genetic clusters (red, green and blue) of individuals of *A. cephalonica*, *A. alba* and *A. nebrodensis* (adults and seedlings) is represented.

Again, we found the existence of three genetic clusters that agree with taxonomic classification (i.e. species), except for plants 21M and 31M and for seedlings 18.10.P and 20.1.P, which were appeared in the *A. alba* and *A. cephalonica* groups.

#### **8. Conclusions**

We found that most adult tree in the natural population are genetically close. Effective population size  $(N_e)$ , a key parameter in population genetics to estimate the number of individuals that effectively contributes offspring to the next generation, was markedly low (only 6).

Most seedlings/saplings from natural regenerations are "pure *A. nebrodensis*" but mainly originated by self-fertilization. Genetic drift and inbreeding are expected to decrease the ability of seedlings to cope with a wide variety of environmental stressors, which probably would explain the low survival rate of seedlings reported in previous studies.

On the other hand, we can consider **very likely the hybrid origin of the 18.10.P and 20.1.P seedlings, whereas 21M and 31M adults, are also suspicious to be non-pure** *A. nebrodensis* or even alien fir species (especially in the case of 31M). Likewise, plants without a complete assignment to their parental origin (16.2.P, 16.3.P, 18.13.P, 21.3.P, 21.4.P, 21.5.P and 22.18.P), or without assignment (21.3.P, 21.4.P and 21.5.P), should be careful considered as potential hybrids, even though evidences from PCA suggest that they probably are *A. nebrodensis* individuals.

#### 9. Ex situ conservation of DNA at the DNA bank of the University of Seville

Vegetal material (leaves) collected from adult tress of *A. nebrodensis* were deposited in the DNA bank of the University of Seville for the long-term conservation. In particular, the DNA bank will harbor material from 29 of 30-adult trees (all plants except for 20M; Table 4). The amount of vegetal material available may vary depending on the material used during the DNA extractions. Samples from each individual are given a unique accession number in the herbarium database. A voucher specimen of *A. nebrodensis* is available at the Servicio General de Investigacion de Herbario (SEV), Universidad (voucher: SEV256497).

#### Tables

**Table 1.** Genetic diversity estimations of adult trees. *PHt* (proportion of heterozygous loci in an individual), *Hs* (Standardized heterozygosity based on the mean expected heterozygosity), *IR* (internal relatedness), *HL* (homozygosity by locus) and *INBR* (inbreeding coefficient). Colors of coefficients range from lower (dark blue) to high values (yellow).

|     | PHt  | Hs_exp | IR    | HL   | INBR  |
|-----|------|--------|-------|------|-------|
| 13M |      |        | -0.12 | 0.50 | -0.20 |
| 22M | 0.42 | 0.97   | 0.02  | 0.57 | -0.02 |
| 29M | 0.42 | 0.97   | 0.01  | 0.57 | -0.01 |
| 12M | 0.40 | 0.93   | 0.13  | 0.57 | -0.01 |
| 14M | 0.40 | 0.93   | 0.09  | 0.59 | 0.02  |
| 26M | 0.40 | 0.93   | 0.08  | 0.58 | 0.04  |
| 10M | 0.39 | 0.90   | 0.13  | 0.61 | 0.17  |
| 18M | 0.39 | 0.90   | 0.11  | 0.61 | 0.12  |
| 11M | 0.36 | 0.83   | 0.15  | 0.61 | 0.11  |
| 17M | 0.36 | 0.83   | 0.17  | 0.63 | 0.10  |
| 20M | 0.35 | 0.81   | 0.15  | 0.63 | 0.06  |
| 23M | 0.34 | 0.79   | 0.16  | 0.63 | 0.07  |
| 8M  | 0.34 | 0.79   | 0.29  | 0.64 | 0.57  |
| 2M  | 0.33 | 0.76   | 0.23  | 0.65 | 0.15  |
| 9M  | 0.33 | 0.76   | 0.23  | 0.66 | 0.12  |
| 15M | 0.32 | 0.74   | 0.22  | 0.67 | 0.08  |
| 24M | 0.32 | 0.74   | 0.22  | 0.66 | 0.13  |
| 25M | 0.32 | 0.74   | 0.23  | 0.66 | 0.18  |
| 4M  | 0.31 | 0.72   | 0.28  | 0.67 | 0.25  |
| 6M  | 0.30 | 0.69   | 0.27  | 0.68 | 0.20  |
| 7M  | 0.30 | 0.69   | 0.31  | 0.69 | 0.20  |
| 28M | 0.28 | 0.65   | 0.34  | 0.71 | 0.17  |
| 1M  | 0.26 | 0.60   | 0.37  | 0.74 | 0.25  |
| 27M | 0.26 | 0.60   | 0.39  | 0.73 | 0.31  |
| 21M | 0.25 | 0.58   | 0.44  | 0.75 | 0.55  |
| 32M | 0.25 | 0.58   | 0.45  | 0.74 | 0.36  |
| 30M | 0.21 | 0.49   | 0.54  | 0.78 | 0.61  |
| 19M | 0.18 | 0.42   | 0.63  |      |       |
| 16M | 0.16 | 0.37   | 0.59  |      | 0.40  |
| 31M | 0.14 | 0.32   | 0.68  |      |       |

**Table 2.** List of 30 recommended crosses between mature adult trees of *A. nebrodensis* ordered by more distant co-ancestry and, therefore, more convenient crosses to increase genetic diversity. Plants with a suspicious origin were highlighted with red font. Please note some of the recommended outcrossing may involve non-reproductive individuals.

| Cross 1  | 19M | 26M |
|----------|-----|-----|
| Cross 2  | 11M | 19M |
| Cross 3  | 17M | 31M |
| Cross 4  | 9M  | 30M |
| Cross 5  | 31M | 32M |
| Cross 6  | 21M | 30M |
| Cross 7  | 7M  | 32M |
| Cross 8  | 8M  | 9M  |
| Cross 9  | 8M  | 19M |
| Cross 10 | 16M | 30M |
| Cross 11 | 10M | 27M |
| Cross 12 | 30M | 31M |
| Cross 13 | 22M | 7M  |
| Cross 14 | 7M  | 30M |
| Cross 15 | 25M | 28M |
| Cross 16 | 21M | 22M |
| Cross 17 | 1M  | 22M |
| Cross 18 | 18M | 9M  |
| Cross 19 | 27M | 25M |
| Cross 20 | 1M  | 29M |
| Cross 21 | 8M  | 12M |
| Cross 22 | 24M | 28M |
| Cross 23 | 4M  | 25M |
| Cross 24 | 25M | 26M |
| Cross 25 | 2M  | 14M |
| Cross 26 | 21M | 32M |
| Cross 27 | 13M | 15M |
| Cross 28 | 27M | 24M |
| Cross 29 | 10M | 30M |
| Cross 30 | 19M | 28M |

**Table 3.** List of the 118-juvenile individuals of *A. nebrodensis* originated from natural regeneration with their inferred progenitors as a result of paternity tests and the probability of correct assignment. Seedlings originated by xenogamy (column "Self-fertilization") were highlighted in bold. The probability of hybrid origin is also indicated.

| Onspring u   Interred Dad   Interred Num   Probability (%)   Self-fertilization | Hybrid origin |
|---------------------------------------------------------------------------------|---------------|
| 1.1.P 1M 1M 100 Yes                                                             | -             |
| 1.2.P 1M 1M 100 Yes                                                             | -             |
| 1.3.P 1M 1M 100 Yes                                                             | -             |
| 1.4.P 1M 1M 100 Yes                                                             | -             |
| 1.5.P 1M 1M 100 Yes                                                             | -             |
| 1.6.P 1M 1M 100 Yes                                                             | -             |
| 1.7.P 1M 1M 100 Yes                                                             | -             |
| 1.8.P 1M 1M 83.48 Yes                                                           | -             |
| 1.9.P 1M 1M 100 Yes                                                             | -             |
| 1.10.P 1M 1M 100 Yes                                                            | -             |
| 1.11.P 1M 1M 100 Yes                                                            | -             |
| 6.1.P 6M 6M 100 Yes                                                             | -             |
| 6.2.P 6M 6M 100 Yes                                                             | -             |
| 8.1.P 8M 8M 100 Yes                                                             | -             |
| 8.2.P 8M 8M 100 Yes                                                             | -             |
| 10.1.P 11M 11M 100 Yes                                                          | -             |
| 10.2.P 10M 10M 100 Yes                                                          | -             |
| 10.3.P 10M 10M 100 Yes                                                          | -             |
| 11.1.P 10M 10M 100 Yes                                                          | -             |
| 11.2.P 10M 11M 100 <b>No</b>                                                    | -             |
| 11.3.P 10M 11M 100 No                                                           | -             |
| 11.4.P 10M 10M 100 Yes                                                          | -             |
| 11.5.P 10M 10M 100 Yes                                                          | -             |
| 11.6.P 10M 10M 100 Yes                                                          | -             |
| 11.7.P 10M 11M 40.44 <b>No</b>                                                  | -             |
| 11.8.P 10M 11M 42.66 <b>No</b>                                                  | -             |
| 11.9.P 10M 10M 100 Yes                                                          | -             |
| 11.10.P 17M 17M 100 Yes                                                         | -             |
| 11.11.P 2M 2M 100 Yes                                                           | -             |
| 11.12.P 1M 1M 100 Yes                                                           | -             |
| 11.13.P 8M 8M 100 Yes                                                           | -             |
| 11.14.P 10M 10M 100 Yes                                                         | -             |
| 11.15.P 10M 10M 100 Yes                                                         | -             |
| 11.16.P 10M 10M 100 Yes                                                         | -             |
| 11.17.P 10M 10M 100 Yes                                                         | -             |
| 11.18.P 17M 17M 100 Yes                                                         | -             |
| 11.19.P 23M 23M 100 Yes                                                         | -             |
| 16.1.P 17M 17M 100 Yes                                                          | -             |
| 16.2.P Unknown 17M 74.58 Unknown                                                | Probable      |
| 16.3.P Unknown 17M 74.61 Unknown                                                | Probable      |
| 18.1.P 18M 18M 100 Yes                                                          | -             |
| 18.2.P 22M 18M 100 <b>No</b>                                                    | -             |
| 18.3.P 18M 18M 100 Yes                                                          | -             |
| 18.4.P 18M 18M 100 Yes                                                          | -             |
| 18.5.P 18M 18M 100 Yes                                                          | -             |

| 18.6.P  | 17M     | 18M     | 100   | No      | -         |
|---------|---------|---------|-------|---------|-----------|
| 18.7.P  | 18M     | 18M     | 100   | Yes     | -         |
| 18.8.P  | 18M     | 18M     | 100   | Yes     | -         |
| 18.9.P  | 18M     | 18M     | 100   | Yes     | -         |
| 18.10.P | Unknown | 18M     | 100   | Unknown | Very high |
| 18.11.P | 18M     | 18M     | 100   | Yes     | -         |
| 18.12.P | 18M     | 18M     | 100   | Yes     | -         |
| 18.13.P | Unknown | 18M     | 100   | Unknown | Probable  |
| 18.14.P | 18M     | 18M     | 100   | Yes     | -         |
| 18.15.P | 18M     | 18M     | 100   | Yes     | -         |
| 18.16.P | 18M     | 18M     | 100   | Yes     | -         |
| 18.17.P | 18M     | 18M     | 100   | Yes     | -         |
| 20.1.P  | Unknown | 29M     | 62.01 | Unknown | Very high |
| 20.2.P  | 29M     | 29M     | 100   | Yes     | -         |
| 20.3.P  | 29M     | 29M     | 100   | Yes     | -         |
| 20.4.P  | 29M     | 29M     | 100   | Yes     | -         |
| 21.3.P  | Unknown | Unknown | 100   | Unknown | Very high |
| 21.4.P  | Unknown | Unknown | 100   | Unknown | Very high |
| 21.5.P  | Unknown | Unknown | 100   | Unknown | Very high |
| 22.1.P  | 22M     | 22M     | 100   | Yes     | -         |
| 22.2.P  | 22M     | 22M     | 100   | Yes     | -         |
| 22.3.P  | 22M     | 22M     | 100   | Yes     | -         |
| 22.4.P  | 22M     | 22M     | 100   | Yes     | -         |
| 22.5.P  | 22M     | 22M     | 100   | Yes     | -         |
| 22.6.P  | 22M     | 22M     | 100   | Yes     | -         |
| 22.7.P  | 22M     | 22M     | 100   | Yes     | -         |
| 22.8.P  | 22M     | 22M     | 96.28 | Yes     | -         |
| 22.9.P  | 22M     | 22M     | 100   | Yes     | -         |
| 22.10.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.11.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.12.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.13.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.14.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.15.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.16.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.17.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.18.P | Unknown | 22M     | 100   | Unknown | Probable  |
| 22.19.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.20.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.21.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.22.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.23.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.24.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.25.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.26.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.27.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.28.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.29.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.30.P | 22M     | 22M     | 100   | Yes     | -         |
| 22.31.P | 22M     | 22M     | 100   | Yes     | -         |

| 22.32.P | 22M | 22M | 100 | Yes | - |
|---------|-----|-----|-----|-----|---|
| 22.33.P | 22M | 22M | 100 | Yes | - |
| 22.34.P | 22M | 22M | 100 | Yes | - |
| 22.35.P | 22M | 22M | 100 | Yes | - |
| 22.36.P | 22M | 22M | 100 | Yes | - |
| 22.37.P | 22M | 22M | 100 | Yes | - |
| 22.38.P | 22M | 22M | 100 | Yes | - |
| 22.39.P | 22M | 22M | 100 | Yes | - |
| 22.40.P | 22M | 22M | 100 | Yes | - |
| 22.41.P | 22M | 22M | 100 | Yes | - |
| 22.42.P | 22M | 22M | 100 | Yes | - |
| 27.1.P  | 27M | 27M | 100 | Yes | - |
| 27.2.P  | 27M | 27M | 100 | Yes | - |
| 27.3.P  | 27M | 27M | 100 | Yes | - |
| 29.1.P  | 29M | 29M | 100 | Yes | - |
| 29.2.P  | 29M | 29M | 100 | Yes | - |
| 29.3.P  | 29M | 29M | 100 | Yes | - |
| 29.4.P  | 29M | 29M | 100 | Yes | - |
| 29.5.P  | 29M | 29M | 100 | Yes | - |
| 29.6.P  | 29M | 29M | 100 | Yes | - |
| 29.7.P  | 29M | 29M | 100 | Yes | - |
| 29.8.P  | 29M | 29M | 100 | Yes | - |
| 23.1.P  | 23M | 23M | 100 | Yes | - |

**Table 4.** List of accession numbers of the vegetal material from 29 of the 30-adult trees of *A. nebrodensis* deposited in the DNA bank of the University of Seville. Identification of adult trees correspond to original nomenclature.

| correspond to original nomencia |                              |
|---------------------------------|------------------------------|
| ID number of adult trees        | Accession number assigned in |
| according to Virgilio et al.    | the DNA Bank of the          |
| 2000 and posterior studies      | University of Seville        |
| 1M                              | 599                          |
| 2M                              | 600                          |
| 4M                              | 601                          |
| 6M                              | 602                          |
| 7M                              | 603                          |
| 8M                              | 604                          |
| 9M                              | 605                          |
| 10M                             | 606                          |
| 11M                             | 607                          |
| 12M                             | 608                          |
| 13M                             | 609                          |
| 14M                             | 610                          |
| 15M                             | 611                          |
| 16M                             | 612                          |
| 17M                             | 613                          |
| 18M                             | 614                          |
| 19M                             | 615                          |
| 21M                             | 616                          |
| 22M                             | 617                          |
| 23M                             | 618                          |
| 24M                             | 619                          |
| 25M                             | 620                          |
| 26M                             | 621                          |
| 27M                             | 622                          |
| 28M                             | 623                          |
| 29M                             | 624                          |
| 30M                             | 625                          |
| 31M                             | 626                          |
| 32M                             | 627                          |

## Supplementary information

| Table S1. Ritland estimator (RIT) of pairwise co-ancestry between |     |         |  |
|-------------------------------------------------------------------|-----|---------|--|
| adult trees of A. nebrodensis ordered by negative values.         |     |         |  |
| 19M                                                               | 26M | -0.3837 |  |
| 11M                                                               | 19M | -0.3818 |  |
| 17M                                                               | 31M | -0.3807 |  |
| 9M                                                                | 30M | -0.3757 |  |
| 31M                                                               | 32M | -0.3735 |  |
| 21M                                                               | 30M | -0.3675 |  |
| 7M                                                                | 32M | -0.3645 |  |
| 8M                                                                | 9M  | -0.3582 |  |
| 8M                                                                | 19M | -0.3569 |  |
| 16M                                                               | 30M | -0.3543 |  |
| 10M                                                               | 27M | -0.3454 |  |
| 30M                                                               | 31M | -0.3307 |  |
| 22M                                                               | 7M  | -0.3251 |  |
| 7M                                                                | 30M | -0.3095 |  |
| 25M                                                               | 28M | -0.3090 |  |
| 21M                                                               | 22M | -0.3078 |  |
| 1M                                                                | 22M | -0.3067 |  |
| 18M                                                               | 9M  | -0.2982 |  |
| 27M                                                               | 25M | -0.2889 |  |
| 1M                                                                | 29M | -0.2882 |  |
| 8M                                                                | 12M | -0.2843 |  |
| 24M                                                               | 28M | -0.2836 |  |
| 4M                                                                | 25M | -0.2822 |  |
| 25M                                                               | 26M | -0.2809 |  |
| 2M                                                                | 14M | -0.2739 |  |
| 21M                                                               | 32M | -0.2668 |  |
| 13M                                                               | 15M | -0.2667 |  |
| 27M                                                               | 24M | -0.2639 |  |
| 10M                                                               | 30M | -0.2605 |  |
| 19M                                                               | 28M | -0.2603 |  |
| 18M                                                               | 32M | -0.2585 |  |
| 8M                                                                | 27M | -0.2580 |  |
| 4M                                                                | 24M | -0.2574 |  |
| 24M                                                               | 26M | -0.2560 |  |
| 1M                                                                | 18M | -0.2539 |  |
| 16M                                                               | 29M | -0.2519 |  |
| 16M                                                               | 32M | -0.2515 |  |
| 19M                                                               | 25M | -0.2507 |  |
| 22M                                                               | 31M | -0.2500 |  |

| 29M | 4M  | -0.2481 |
|-----|-----|---------|
| 10M | 28M | -0.2458 |
| 27M | 12M | -0.2441 |
| 6M  | 28M | -0.2433 |
| 14M | 31M | -0.2432 |
| 6M  | 18M | -0.2381 |
| 11M | 27M | -0.2359 |
| 1M  | 32M | -0.2348 |
| 26M | 32M | -0.2334 |
| 10M | 31M | -0.2320 |
| 10M | 21M | -0.2313 |
| 10M | 15M | -0.2311 |
| 27M | 9M  | -0.2295 |
| 12M | 17M | -0.2274 |
| 16M | 22M | -0.2270 |
| 19M | 24M | -0.2256 |
| 29M | 26M | -0.2247 |
| 2M  | 7M  | -0.2221 |
| 20M | 14M | -0.2213 |
| 17M | 19M | -0.2195 |
| 15M | 30M | -0.2179 |
| 21M | 23M | -0.2150 |
| 6M  | 14M | -0.2130 |
| 8M  | 28M | -0.2123 |
| 1M  | 19M | -0.2112 |
| 12M | 28M | -0.2104 |
| 26M | 30M | -0.2097 |
| 8M  | 31M | -0.2094 |
| 19M | 23M | -0.2072 |
| 22M | 9M  | -0.2064 |
| 8M  | 16M | -0.2059 |
| 10M | 17M | -0.2051 |
| 27M | 29M | -0.2036 |
| 2M  | 4M  | -0.1982 |
| 9M  | 23M | -0.1940 |
| 18M | 2M  | -0.1929 |
| 17M | 23M | -0.1922 |
| 1M  | 20M | -0.1914 |
| 19M | 30M | -0.1906 |
| 15M | 25M | -0.1903 |
| 8M  | 22M | -0.1885 |
| 6M  | 8M  | -0.1873 |

| 23M | 28M | -0.1856 |
|-----|-----|---------|
| 24M | 32M | -0.1854 |
| 25M | 32M | -0.1854 |
| 21M | 27M | -0.1828 |
| 8M  | 15M | -0.1820 |
| 1M  | 10M | -0.1798 |
| 20M | 30M | -0.1792 |
| 21M | 25M | -0.1763 |
| 4M  | 7M  | -0.1759 |
| 29M | 30M | -0.1756 |
| 2M  | 15M | -0.1750 |
| 19M | 31M | -0.1708 |
| 6M  | 27M | -0.1689 |
| 15M | 19M | -0.1686 |
| 7M  | 31M | -0.1666 |
| 15M | 24M | -0.1657 |
| 16M | 18M | -0.1643 |
| 12M | 32M | -0.1643 |
| 11M | 32M | -0.1640 |
| 7M  | 26M | -0.1640 |
| 20M | 32M | -0.1628 |
| 27M | 23M | -0.1606 |
| 18M | 21M | -0.1605 |
| 9M  | 32M | -0.1602 |
| 16M | 20M | -0.1590 |
| 11M | 4M  | -0.1568 |
| 1M  | 2M  | -0.1535 |
| 21M | 24M | -0.1520 |
| 27M | 31M | -0.1506 |
| 29M | 17M | -0.1467 |
| 6M  | 17M | -0.1459 |
| 21M | 12M | -0.1459 |
| 18M | 31M | -0.1458 |
| 20M | 31M | -0.1445 |
| 6M  | 13M | -0.1443 |
| 4M  | 26M | -0.1442 |
| 13M | 30M | -0.1437 |
| 21M | 14M | -0.1429 |
| 9M  | 14M | -0.1390 |
| 22M | 25M | -0.1387 |
| 27M | 2M  | -0.1373 |
| 29M | 9M  | -0.1367 |

| 1M  | 21M | -0.1340 |
|-----|-----|---------|
| 11M | 21M | -0.1337 |
| 6M  | 32M | -0.1310 |
| 11M | 14M | -0.1301 |
| 16M | 19M | -0.1296 |
| 7M  | 17M | -0.1287 |
| 24M | 30M | -0.1278 |
| 8M  | 2M  | -0.1276 |
| 29M | 28M | -0.1241 |
| 10M | 22M | -0.1225 |
| 16M | 17M | -0.1189 |
| 22M | 26M | -0.1177 |
| 22M | 19M | -0.1157 |
| 22M | 24M | -0.1144 |
| 14M | 25M | -0.1144 |
| 16M | 21M | -0.1127 |
| 23M | 26M | -0.1103 |
| 1M  | 30M | -0.1102 |
| 6M  | 20M | -0.1102 |
| 11M | 28M | -0.1101 |
| 20M | 9M  | -0.1096 |
| 23M | 30M | -0.1088 |
| 16M | 12M | -0.1080 |
| 1M  | 17M | -0.1070 |
| 6M  | 29M | -0.1061 |
| 13M | 25M | -0.1049 |
| 2M  | 28M | -0.1047 |
| 20M | 23M | -0.1045 |
| 2M  | 23M | -0.1045 |
| 8M  | 4M  | -0.1037 |
| 21M | 4M  | -0.1023 |
| 12M | 13M | -0.1022 |
| 11M | 16M | -0.1021 |
| 10M | 26M | -0.1020 |
| 6M  | 23M | -0.0998 |
| 2M  | 26M | -0.0992 |
| 20M | 22M | -0.0991 |
| 19M | 32M | -0.0985 |
| 21M | 19M | -0.0984 |
| 1M  | 4M  | -0.0980 |
| 9M  | 17M | -0.0977 |
| 18M | 27M | -0.0974 |

| 23M | 32M | -0.0970 |
|-----|-----|---------|
| 6M  | 22M | -0.0964 |
| 2M  | 30M | -0.0955 |
| 10M | 25M | -0.0933 |
| 23M | 25M | -0.0927 |
| 27M | 14M | -0.0904 |
| 14M | 24M | -0.0890 |
| 6M  | 30M | -0.0883 |
| 9M  | 13M | -0.0848 |
| 22M | 15M | -0.0837 |
| 16M | 4M  | -0.0804 |
| 13M | 24M | -0.0804 |
| 14M | 15M | -0.0776 |
| 17M | 25M | -0.0775 |
| 18M | 28M | -0.0773 |
| 18M | 30M | -0.0773 |
| 2M  | 17M | -0.0769 |
| 22M | 23M | -0.0762 |
| 12M | 15M | -0.0759 |
| 7M  | 25M | -0.0754 |
| 23M | 31M | -0.0748 |
| 16M | 15M | -0.0738 |
| 16M | 28M | -0.0728 |
| 18M | 17M | -0.0727 |
| 11M | 20M | -0.0711 |
| 13M | 19M | -0.0710 |
| 18M | 19M | -0.0701 |
| 4M  | 12M | -0.0700 |
| 10M | 4M  | -0.0692 |
| 6M  | 26M | -0.0691 |
| 10M | 24M | -0.0690 |
| 10M | 32M | -0.0688 |
| 9M  | 28M | -0.0688 |
| 13M | 17M | -0.0688 |
| 23M | 24M | -0.0683 |
| 22M | 13M | -0.0682 |
| 4M  | 13M | -0.0682 |
| 11M | 18M | -0.0661 |
| 11M | 25M | -0.0659 |
| 7M  | 28M | -0.0656 |
| 1M  | 28M | -0.0620 |
| 29M | 2M  | -0.0611 |

| 14M | 17M | -0.0604 |
|-----|-----|---------|
| 8M  | 25M | -0.0603 |
| 12M | 24M | -0.0601 |
| 6M  | 19M | -0.0600 |
| 20M | 21M | -0.0594 |
| 20M | 25M | -0.0587 |
| 6M  | 15M | -0.0584 |
| 11M | 22M | -0.0565 |
| 4M  | 32M | -0.0565 |
| 7M  | 14M | -0.0565 |
| 13M | 26M | -0.0541 |
| 1M  | 13M | -0.0539 |
| 17M | 24M | -0.0529 |
| 4M  | 9M  | -0.0517 |
| 1M  | 8M  | -0.0515 |
| 7M  | 24M | -0.0501 |
| 22M | 12M | -0.0500 |
| 1M  | 15M | -0.0496 |
| 7M  | 19M | -0.0489 |
| 6M  | 10M | -0.0487 |
| 18M | 22M | -0.0474 |
| 20M | 4M  | -0.0470 |
| 10M | 16M | -0.0452 |
| 21M | 13M | -0.0441 |
| 9M  | 15M | -0.0437 |
| 11M | 17M | -0.0435 |
| 13M | 31M | -0.0431 |
| 11M | 24M | -0.0416 |
| 14M | 26M | -0.0416 |
| 8M  | 18M | -0.0406 |
| 29M | 31M | -0.0399 |
| 15M | 31M | -0.0369 |
| 8M  | 24M | -0.0358 |
| 29M | 13M | -0.0358 |
| 13M | 32M | -0.0354 |
| 20M | 24M | -0.0344 |
| 1M  | 14M | -0.0337 |
| 10M | 12M | -0.0315 |
| 6M  | 7M  | -0.0311 |
| 28M | 31M | -0.0300 |
| 13M | 23M | -0.0294 |
| 8M  | 14M | -0.0289 |

| 4M    | 17M   | -0.0285   |
|-------|-------|-----------|
| 16M   | 25M   | -0.0260   |
| 11M   | 15M   | -0.0259   |
| 4M    | 14M   | -0.0255   |
| 16M   | 26M   | -0.0253   |
| 10M   | 7M    | -0.0235   |
| 10M   | 1/1/1 | -0.0233   |
| 2814  | 2014  | -0.0233   |
| 1 M   | 26M   | 0.0230    |
|       | 20101 | -0.0223   |
| 25101 | 31101 | -0.0212   |
|       | 29101 | -0.0192   |
| 11M   | 29M   | -0.0182   |
| 11M   | /M    | -0.0175   |
| 11M   | 30M   | -0.0164   |
| 10M   | 2M    | -0.0160   |
| 20M   | 15M   | -0.0160   |
| 16M   | 27M   | -0.0146   |
| 10M   | 13M   | -0.0142   |
| 8M    | 32M   | -0.0140   |
| 22M   | 4M    | -0.0135   |
| 16M   | 2M    | -0.0131   |
| 18M   | 25M   | -0.0126   |
| 15M   | 32M   | -0.0125   |
| 17M   | 30M   | -0.0113   |
| 21M   | 28M   | -0.0109   |
| 12M   | 26M   | -0.0090   |
| 18M   | 26M   | -0.0077   |
| 4M    | 30M   | -0.0069   |
| 6M    | 31M   | -0.0067   |
| 10M   | 20M   | -0.0065   |
| 27M   | 13M   | -0.0053   |
| 1M    | 12M   | -0.0052   |
| 22M   | 28M   | -0.0031   |
| 27M   | 7M    | -0.0023   |
| 8M    | 7M    | -0.0020   |
| 16M   | 24M   | -0.0017   |
| 29M   | 23M   | -0.0015   |
| 13M   | 28M   | -0.0010   |
| 2M    | 12M   | -5 00F-04 |
| 1M    | 11M   | 6.00E-04  |
| 16M   | 13M   | 0.0018    |
| 25M   | 2014  | 0.0018    |
| 20101 | 20101 | 0.0010    |

| 11M | 2M  | 0.0029 |
|-----|-----|--------|
| 21M | 9M  | 0.0032 |
| 24M | 31M | 0.0034 |
| 11M | 13M | 0.0046 |
| 11M | 31M | 0.0057 |
| 1M  | 7M  | 0.0076 |
| 20M | 2M  | 0.0091 |
| 6M  | 4M  | 0.0099 |
| 14M | 32M | 0.0102 |
| 8M  | 17M | 0.0110 |
| 8M  | 30M | 0.0112 |
| 8M  | 29M | 0.0113 |
| 10M | 18M | 0.0113 |
| 18M | 24M | 0.0117 |
| 10M | 11M | 0.0122 |
| 16M | 14M | 0.0128 |
| 20M | 28M | 0.0137 |
| 9M  | 12M | 0.0150 |
| 18M | 15M | 0.0162 |
| 20M | 27M | 0.0168 |
| 21M | 2M  | 0.0170 |
| 20M | 19M | 0.0175 |
| 29M | 32M | 0.0227 |
| 15M | 23M | 0.0228 |
| 8M  | 11M | 0.0242 |
| 6M  | 16M | 0.0271 |
| 22M | 14M | 0.0288 |
| 8M  | 20M | 0.0290 |
| 29M | 25M | 0.0297 |
| 1M  | 9M  | 0.0306 |
| 7M  | 12M | 0.0319 |
| 7M  | 9M  | 0.0334 |
| 21M | 17M | 0.0352 |
| 2M  | 19M | 0.0364 |
| 1M  | 23M | 0.0377 |
| 20M | 29M | 0.0377 |
| 12M | 14M | 0.0387 |
| 12M | 19M | 0.0388 |
| 20M | 13M | 0.0394 |
| 1M  | 27M | 0.0396 |
| 17M | 26M | 0.0398 |
| 29M | 15M | 0.0406 |

| 27M | 19M | 0.0440 |
|-----|-----|--------|
| 9M  | 26M | 0.0468 |
| 12M | 31M | 0.0500 |
| 11M | 9M  | 0.0516 |
| 29M | 12M | 0.0517 |
| 1M  | 6M  | 0.0533 |
| 29M | 24M | 0.0540 |
| 16M | 9M  | 0.0549 |
| 6M  | 2M  | 0.0551 |
| 18M | 12M | 0.0555 |
| 6M  | 12M | 0.0556 |
| 18M | 20M | 0.0593 |
| 7M  | 13M | 0.0594 |
| 1M  | 24M | 0.0607 |
| 4M  | 31M | 0.0611 |
| 12M | 30M | 0.0617 |
| 16M | 7M  | 0.0642 |
| 6M  | 21M | 0.0647 |
| 2M  | 13M | 0.0667 |
| 4M  | 28M | 0.0670 |
| 14M | 23M | 0.0682 |
| 15M | 26M | 0.0697 |
| 4M  | 15M | 0.0709 |
| 2M  | 25M | 0.0716 |
| 18M | 29M | 0.0721 |
| 10M | 9M  | 0.0746 |
| 12M | 25M | 0.0766 |
| 4M  | 23M | 0.0778 |
| 11M | 23M | 0.0795 |
| 12M | 23M | 0.0827 |
| 20M | 26M | 0.0830 |
| 9M  | 24M | 0.0856 |
| 9M  | 25M | 0.0856 |
| 14M | 28M | 0.0860 |
| 28M | 32M | 0.0862 |
| 29M | 14M | 0.0882 |
| 27M | 26M | 0.0895 |
| 16M | 31M | 0.0901 |
| 21M | 7M  | 0.0916 |
| 21M | 29M | 0.0917 |
| 20M | 12M | 0.0919 |
| 22M | 2M  | 0.0952 |

| 18M | 14M | 0.0959 |
|-----|-----|--------|
| 2M  | 24M | 0.0967 |
| 1M  | 31M | 0.0968 |
| 6M  | 24M | 0.1013 |
| 21M | 15M | 0.1035 |
| 22M | 17M | 0.1038 |
| 7M  | 23M | 0.1080 |
| 29M | 7M  | 0.1096 |
| 7M  | 15M | 0.1116 |
| 29M | 19M | 0.1119 |
| 8M  | 26M | 0.1162 |
| 18M | 4M  | 0.1168 |
| 2M  | 32M | 0.1184 |
| 27M | 4M  | 0.1303 |
| 9M  | 31M | 0.1345 |
| 10M | 23M | 0.1386 |
| 20M | 7M  | 0.1397 |
| 13M | 14M | 0.1405 |
| 9M  | 19M | 0.1455 |
| 11M | 12M | 0.1466 |
| 27M | 32M | 0.1499 |
| 8M  | 10M | 0.1519 |
| 6M  | 25M | 0.1526 |
| 18M | 23M | 0.1545 |
| 8M  | 21M | 0.1553 |
| 27M | 30M | 0.1561 |
| 2M  | 31M | 0.1570 |
| 21M | 26M | 0.1614 |
| 16M | 23M | 0.1698 |
| 22M | 27M | 0.1716 |
| 8M  | 13M | 0.1752 |
| 18M | 13M | 0.1782 |
| 17M | 28M | 0.1873 |
| 1M  | 25M | 0.1890 |
| 14M | 19M | 0.1969 |
| 27M | 17M | 0.2032 |
| 6M  | 11M | 0.2059 |
| 14M | 30M | 0.2115 |
| 8M  | 23M | 0.2139 |
| 26M | 31M | 0.2148 |
| 15M | 17M | 0.2196 |
| 11M | 26M | 0.2297 |

| 17M | 32M | 0.2406 |
|-----|-----|--------|
| 15M | 28M | 0.2480 |
| 2M  | 9M  | 0.2494 |
| 20M | 17M | 0.2766 |
| 27M | 15M | 0.2829 |
| 18M | 7M  | 0.2838 |
| 10M | 29M | 0.3243 |
| 6M  | 9M  | 0.4061 |
| 26M | 28M | 0.4244 |
| 10M | 19M | 0.4541 |
| 4M  | 19M | 0.5319 |
| 21M | 31M | 0.5353 |
| 27M | 28M | 0.5591 |
| 30M | 32M | 0.7385 |
| 22M | 32M | 0.8053 |
| 1M  | 16M | 0.8810 |
| 22M | 30M | 0.8894 |
| 24M | 25M | 1.0587 |